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COMPUTATIONS OF JET IMPINGEMENT ON A FLAT SURFACE t

A. Rubel*
Grumman Aerospace Corporation
Bethpage, New York 11714

Abstract

An incompressible, inviscid rotational flow model
is used to represent the normal impingement of axisym-
metric jets and the oblique impingement of two- i
dimensional jets upon a flat surface. The Poisson-
type equation that results from this formulation is cast
into suitable finite difference form and solved by relaxa-
tion techniques. Results, in terms of the ground plane

.pressure distribution, centerline velocity decay and

oblique impingement flow field structure, compare well
with observations.

Introduction

During lift-off of VTOL aircraft, turbulent lifting
jets mix with the surroundings and impinge upon the
ground, producing wall jets which interact to form up-
wash regions of high static pressure. These phenomena
and their induced secondary flows produce lifting forces
on the aircraft as well as suckdown and attendent lift
losses. An understanding of the behavior of these com-
plex flow fields is required for the optimization of VTOL
design.

Efforts to analyze the overall nature of the inter-
actions via the numerical solution of the Navier-Stokes
equations and a single equation turbulence model have
achieved some successl-4 but there are difficulties
associated with the specification of a unified length
scale over the entire computational domain. Incorpora-
tion of higher-order turbulence models and computa-
tional resolution of the three-dimensional aspects of the
flow field require considerably more time- consuming
calculations and have not yet been attempted.

An alternative, component approach.5"8 proceeds
by dividing the flow field into separate interacting
regions which are coupled to provide an overall solu-
tion. The advantage of this approach is that each
region may be represented by models closely related
to the physics of the problem and relatively accurate
engineering solutions obtained with comparatively
gimple methods. Within the context of this approach,
scaling analyses 8 9 indicate that the details of the
impingement region are dominated by a balance of the
pressure forces due to flow deflection and the inertial
forces of convection.

In this study a variety of incompressible impinge-
ment problems are considered under the assumption
that the flow within the impingement zone can be treated
as an inviscid, rotational flow. Axisymmetric jets
impinging normally and two-dimensional jets impinging
obliquely form a set of problems that can be formulated
in two dimensions with vorticity/radius or vorticity,
respectively, conserved along streamlines. Both de-
veloping and fully developed jet velocity profiles are
considered as entrance conditions to the impingement
region and finite difference techniques are used to
solve the governing equations. The results are compared

with observations in order to determine the range of

validity of the inviscid rotational model with respect to
the prediction of the ground plane pressure distribution
and the structure of the oblique impingement flow field.

Formulation

The normal impingement of axisymmetric jets and the
normal /oblique impingement of two-dimensional jets are
represented here by the equations governing inviscid
rotational flow. The jets are considered to be far from
the impingement plane so that influx conditions are not
affected by the jet deflection. The formulation is given
in terms of dimensionless quantities; velocities are
scaled by the maximum jet velocit: , distance by the jet
half width (i.e., distance measured along the perpen-~
dicular from the jet centerline to the point at which
the velocity is half the maximum) and pressures by the
total pressure at the jet centerline. Ambient and jet
static pressure are taken to be zero without loss of
generality.

A coordinate system is chosen with z directed per-
pendicular to the ground plane, positive outward, and
x directed along the ground plane such that the origin
is at the intersection of the ground plane and the jet
centerline (Fig. 1). Eliminating pressure from the
x and z momentum equations yields the vorticity
equation

) H]
|
I
/
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___ﬁ/ B STREAMLINE
/ ‘\T
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Fig. 1 Schematic of the Jet Impingement Problem
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where u and w are the velocities in the x and z direc-
tions, respectively, n is an index of the flow character
(axisymmetric n = 1, two-dimensional n = 0) and w is
the vorticity defined by
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A dimensionless stream function

a3y _ n, 3% _ .n ’

H—-xv\,-a—z—xu 3)
assures satisfaction of mass conservation and when
combined with the definition of vorticity produces the
Poisson-type equation that provides the basis for the
ensuing analysis

2y n 3 (1 X 20/ w
2GR .

The unifying featurc of the flows considered here is
that the vorticity function, w /x", is conserved along
stream surfaces and, in the absence of separation
bubbles, is fully specified in terms of the incoming
jet stream function. The pressure is determined
from an auxiliary Bernoulli equation

p o+ u o+ wl = f(9) )

which follows from the vector momentum equation.
This relationship implies that the total pressure is
conserved on stream surfaces and completes the
formulation of the problem.

Although a unified treatment of the class of flows to
be investigated has been presented to this point, it is
advantageous to further categorize the flows to more
clearly indicate the manner in which boundary condi-
tions are prescribed and special cases are developed.
For normal impingement there is flow symmetry about
the jet centerline (x = 0) and only the domain x - 0
need be considered. The boundary conditions are

Y(,2) =0 symmetry (6a)
g-ii (0,2) = 0 parallel outflow (6b)
Y(x,0) = 0 ground plane (6¢)
Yix,0) = P(X) jet inflow (6d)

The boundary condition at x— « can be replaced
by a stream function distribution ¥ (z) (e.g., Para-
meswarenl0) and it is instructive to demonstrate the
relationship between this distribution and condition (6d)
as well as the implications of condition (6b).

Consider the points (X, z) for X — « and (x, Z) for
Z - = in order to determine a relationship between
x and z such that these points lie on the same stream-
line. The boundary conditions (6b, d) imply that when
X~ = (Z-= =) the second (first) teim of equation (4)
becomes negligible and x and z are related para-
metrically through w/x®(9). For the axisymmetric

case, then
[t R B,

(V(H gf':;!‘x ax \x 9x

2 2
26

and, equating coefficients of the stream function
derivatives,

s B ( %) - @1)2 M
az2 9z oz 9z x2

x - X

9z b3

which has as its solution x2 = 2Xz. Thus, for the
axisymmetric case,

P(X,2z) = ¥(J2Xz,7Z) (7a)

and in a similar fashion it can be shown that for
two-dimensional normal impingement

¥(X,2) = ¥z, Z2). (Tb)

The boundary condition (6b) can be recovered by noting
that

(%"")x = (%?)Z (-g—’;-()z and, thus,

9y =

('a—:'( x = 0 for the two-dimensional case and
X 2 w( oKz
e < - =zw(«N 2Xz , 2)

for the axisymmetric case. For the velocity profile
considered here (Table 1) it can be seen that

(8¥’ ¥ z s

1
0%/ X w (1+202XZ)2 0%

so that the parallel flow boundary condition is
compatible with specification of the far field velocity
profile.

Several jet profiles are chosen (Fig. 2) in order to
evaluate the effect of fully developed vis a vis develop-
ing flow on the ground plane pressure distribution. The
functional form of these proflles and the derived
stream function distributions and vorticity functions are
given in Table 1. The vorticity forcing function is
implicitly related to the stream function in the two-
dimensional developing jet cases, hence, recasting
equation (4) in a new dependent variable §(y), defined
in Table 1, is desirable. For these cases the govern-
ing equation becomes

: ¢
z%q»a:zz—*jf'(ﬁ_e—ﬂ—t)[_) (g:) J

where o is a spreading parameter for the profiles nnd
the boundary conditions are

, to - % (9a)
B w =0 (9b)
txo0) = 3 %)
fx,©) = (1-x)/0 (9d)
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Fig. 2 .Jet Velocity Profiles

Equation (4) remains valid for the oblique two-
dimensional impingement cases (only fully developed
profiles are considered) but the independent variables
are transformed so that the new zZ coordinate is
aligned with the jet centerline. The new X coordinate
is measured from the jet centerline in a direction
parallel to the ground plane. Therefore,

z = z/sin B, X = x-z/tanj (10)

and equation (4) becomes

—_— ¢ ——2 - 2cosp —1&» + Zcf sinzﬁw(l-cfd'z) =0
(11)

where B is the angle between the jet centerline and the
ground plane (Fig. 1). The stream function is still
related to the velocities u and w by equation (3) and,
for B = 90°, equation (11) reduces to equation (4) with
X = X, Z = z. The boundary conditions for the oblique
impingement problem are

%% #o,Z) =0 (12a,b)
Y(X, =) -:‘—l, tanh (clisinu) (12¢)
R, 0) =¥ (2d)

where ¥ g is the value of the stagnation stream function.
It is easily demonstrated that, for the oblique impinge-
ment case,

o AL i A i AR o

T WX, Z) =Y (Rg + Z,Z)X= 0, Z=w (13)
where Xg is the distance, in the X coordinate, from the
jet centerline to the stagnation streamline at the jet
exit. Using this description of the ground plane flow
far from the origin, a balance of momentum in the x
direction yields the value for yg. Thus,

2cosh[*wav- [Y "nav+ [P-=uas
o Vs Vs
where W and U are the velocities in the jet centerline
(influx) and ground plane (efflux) directions, respectively.
Utilizing the fully developed profile information

SAST 2 2 e
l.e.,-W—K—l-clw .do*‘—*cl
produces the desired result
i i
cos B =5 ¢ 4:3 1 clws/a) (14)

and completes the formulation for the impingement
problems considered here.

Method of Solution

Finite difference uzchniqueslo are used to solve the
governing Poisson-type equation for the stream function
field. Since the decaying influx and efflux velocity pro-
files far from the origin are infinite in extent, the calcu-
lation of a bounding jet streamline is not of concern.
Instead, the extent of the physical domain chosen for the
application of the boundary conditions must be large
enough that the results in the ground plane are con-
verged (i.e., a larger domain produces no change in
results). The normal impingement problem is solved
in the rectangular region of height, Z, and width, X
(Fig. 3a). Furthermore, to match the stream function
at the corner point (X, Z), requires that X = 2Z for
the axisymmetric case (Equation 7a) and X = Z for the
two-dimensional case (Equation 7b). (Numerical ex-
periments indicate that such a domain produces improved
mesh convergence properties.) The oblique impinge-
ment problem is solved in the numerically rectangular
region of height, Z, and width, 2X (Fig. 3b). The
displacement of the stagnation streamline, Xg, is small
enough in the problems considered here that at the
corner points (+X, Z) the stream function is nearly
matched (Equation 13).

Table 1 Rotational Jet Flow Parameters

Velocity Stream Function Vorticity Function
- W(x) ¥(x) -w/xn(¥)
Axisymmetric A +c, x5 2 2
; 2 x“/2(1 + ¢, x°) 3
Fully Developed c, = J2'-1 2 4cy(1-2c2y)

Two-Dimensional| (1 - tanh? ¢,X)
Fully Developed | ¢ = tash™' (1/J%)

2 2,2
1_Umh(c %) 2ef ¥ (1-c] ¥°)
c1 1

Two-Dimensional -%— {1+erf[(1-x)/01} "gf(l-,()(/:“” erf £) dé e-fz(ﬁ)
Developing g=,1,.25,.5 1/o —;.ﬁ_
£= (1 -x)/o ;
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The numerical representation of equations (4) and (8)
makes use of a uniform mesh with spacing defined by

X z
ax= g=5 4z =
N1 N1

where Nx and N7z are the number of points in the x and z
directions, respectively. Using central differencing
for the derivatives of the dependent variable results in
the internal point (i, j) finite difference equations for the
axisymmetric case (i.e., Equation 4, n =1),

2
"Ryt BP0 E g Y E0) (15)
2.2 %"
- 8¢, 2y (1-2c, wl.j) z]wi'j

* 2
P ” D by g Rebga)

9 D 2
+ T -2 54 o
“2“(.] (1 'c:’.wl.j) Az)~,

where D) = Az/Ax and x /(x, . i Ax/2), for

T, e e
the two-dimensional fully developed case (i.e., Equation
4, n=0),

*

y u e 22 2
by [2ac o2 a- el pen ]*"i.j

; p
= ¥q,3" D Oy g * Pyt (16)

and for the two-dimensional developing flow case (i.e.,
Fquation 8),

{ o 2 * AL % *
e 2(1D7) & - (A=A DE

*
i fie,

2 [nz 2
D™ (8, g1 * 81,0-0) * Brgla B gen ~4y, 1)

9
- (bz /o)"] (17)

B
: R 1 2
\\hereAi'j 3 ‘ghl,j Ei-l.j)'
2
4 -g‘ j
P AR Ak

By " Mg

These equations are modified slightly at x = X by the use
of additional fictitious points to satisfy the gradient
boundary condition by reflection. The equations (15-17)
are arranged for line relaxation by tridiagonal solution
techniques. The asterisk superscript refers to an
intermediate value of the dependent variable; coefficients
of these variables and the right sides of the equations refer
to previous values of these quantities (i.e., v'? iterative
values). The (v+1) values are obtained by the relaxation
formula (18)

v+l - P v + ”
TR T S N (18)
where 0<r < 1 indicates under-relaxationand 1< r< 2
indicates over-relaxation. The nonlinear vorticity forcing
functions have been arranged in equations (15-17) so that
they are partially included in the implicit line relaxation
calculation,

A similar representation of equation (11), for oblique
impingement, makes use of a uniform mesh with spacings

- i Z
ax = 8. a8 i
2X Z

where N2% and N7 are the number of points in the X and 2
directions, respectively and yields the internal point
finite difference equation
* =2 2 2,2
=T [1+8%c -
2 21 * * A
ST PR 18)

=2 _D
= DU gy Y gV T COBBIN L sir P g

"’i+1,j—1 '“’i-l.jq)
where D = AZ/AX.

The ground plane velocity is a derived quantity of
considerable importance since it determines the ground
plane pressure by Bernoulli's equation. From equation
(3), and the appropriate transformations, this velocity is
given, to second order in mesh height, by

2
1 0 2
uo,x=[3x,02) -+ T x,0) 02)%) /x"az (192)
9z
for fully developed normal impingement, by

ue,x) = (1 +ertd) [L-ogx,az)) /az  (ob)

for the normal impingement developing flow and by

u(0,%) = - [¥(x,A%) - ¥

‘ (19¢
o :
az2

(%,0) (A7)Y] /A7 sing

1
v~

for two-dimensional oblique impingement. The value

of the second derivative of the stream function can be
found from the governing differential equations evaluated
at the ground plane, For the fully developed normal
impingement cases this is easily done

2 2

i%: 0 in 2D flow, d_} = Xw in axisymmetric flow) .
9z 9z

The oblique impingement case, however, requires

calculation of a row of coupled fictitious points located

at z = - AZ (via Equation 18) in order to represent the

stream function second derivative,

2
e, & (%, 0) = (9(R, A7) - 2
s
9z
- P ]
+ Pix, ~ AZ))/(AZ)".
The ground plane pressure is evaluated from

P, 0) = v ®,, 2) - v, o). 20)

A considerable number of calculations are necessary
(e.g., Table 2) in order to determine the character of
the numerical solution. Initial estimates for all

|
|
|
|
|
|
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Table 2 Numerical parameters for selected impingement computations.

Axisymmetric Two-Dimensional
Normal Normal Oblique (Fully Developed)
Fully Fully o B (deg)
Developed | Developed .5 .25 .1 80 70 60 50 40 30
X2 X)* 10 10 12 12 16 20
Z2(Z) 4 5 5 5 5 5 6 6 8 10
Ny (Nyg) 81 41 41 41 41 41 41 81 41 41 41
N, (Nz) 161 41 41 41 41 2121 a1 2 21 21
s 1078 1076 1077 3R B iyt e WPt oWt Y
v 438 370 338 428 1938 741 816 3401 1063 1435 1799

* Quantities in parentheses refer to the oblique impingement caes
X = width, Z = height, N = number of points, € = tolerance, » = number of iterations

computations reported here arc obtained by linear
interpolation between the ground and jet exit stream
function conditions. The successive relaxation procedure
(Equation 18) is applied until a convergence given by

v+1 v
o T .

v
Seldl" jl max (1)
is obtained. It is found that the convergence parameter
€ =10-5 is sufficient so that when ¢ is reduced by an
order of magnitude the maximum velocity variation at
a ground plane point is less than 1073,

The domains of integration and mesh widths indicated
in Table 2 for fully developed normal impingement
reproduce the parallel flow conditions at x = X (i.e.,
Equations (7a,b) are satisfied). It can be shown that
the criterion (XA2)2< <1 must be satisfied in addition to
condition (7a) in order for the axisymmetric ground
plane velocity t8 achieve its asymptotic value, u(X, 0)—1.
The case tabulated, for example, has a slight overshoot
in velocity beginning at x = 3,7 and reaching a maximum
of 1.6% at x = X =8,

As might be expected from a glance at Fig. 2, the
developing flow cases are the most difficult to compute,
The resolution of the jet velocity profiles with a uniform
mesh becomes impractical for spreading parameters,

o < 0.1. Furthermore, the nature of the variable, ¢,

is such that it grows negatively without bound as the
width of the numerical domain is increased. A cut-off,
such that ¢ > - 3.49, is used to restrict this growth and
only points satisfying this criterion are considered within
the domain governed by equation (17). This procedure,
along with appreciable under-relaxation (e.g., r = 0,3
for 0=0.1), provides converged solutions which recover
the asymptotic ground plane velocity even for the
smallest spreading parameter (i.e., u(0,X) = 0.98 at
o=0.1).

Convergence in the oblique impingement case
requires a domain that increases as the inclination
angle, B, departs from 90°. Numerical experiments
indicate that Z = 5/sin g and X = Z (from Equation 13)
provides an adequate domain for these computations.
The mesh width convergence at 8 = 60° is such that a
41 x 21 grid produces ground plane velocities within
1% of those predicted by an 81 x 41 grid. A similar

result is found for the normal impingement case. In
order to further estimate the convergence properties of
the oblique impingement cases of Table 2, the resultant
force on the ground plane and the moment about the
origin are computed from the numerical distribution of
the ground plane pressure and compared with their
exact values assuming recovery of the initial profiles at
large X (i.e., Equation i3 is satisfied). Thus,

1 X
F(calc)=—2—,_ p dx,

- Y
F (exact) = - 2 slnﬁj “wdy e
(1]
M _(calc) =+ % ax
(cale) =5 Pi )
. 2z @3)

Mo(exact) = ;s F (exact).

From a moment balance about Xg, the location of the re-
sultant force, it can be seen by inspection that Xg is also
the distance from the jet centerline to the stagnation
streamline measured at the jet exit and along the direc~
tion parallel to the ground plane (Fig. 1).

It is demonstrated (Table 3) that the computed
force and moment are in error by at most 3% and
2%, respectively, indicating that the oblique

. impingement cases are sufficiently converged.

The computations require about 10-3 seconds/iter~
ation/(number of points) and have been performed using
an HP 3000 Series II computing system (a factor of
about 20 relates this time to IBM 370-168 time). Few
experiments have been done to optimize the relaxation
parameter; the cases of Table 2, except for the develop-

" ing profiles, used r = 1. The cases listed in Table 2 are

those used to demonstrate convergence properties and
quite satisfactory solutions can be obtained for many of
the cases with considerably less stringent conditions.
Finally, although the cases presented here include im-
pingement angles down to 30°, the limitation is on physi-
cal rather than numerical grounds; converged computa-
tions have been established for § as low as 10°,




Table 3 Comparison of computed and exact ground
plane force and moment as a function of
impingement angle.

B F(calc) F (exact) Mg (cale) Mg (exact)
80°  1.535 1.490 -, 1972 -.2005
70" 1.456 1.422 -. 3958 -.4059
60" 1.321 1.310 - 6120 -, 6219
50° 1,170 1.159 -, 8360 -. 8563
100 0,977 0,972 -1.140 -1.121
30 0,750 0,756 -1, 462 -1.436
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Fig. 3 Physical Domain and Boundary Conditions
for Finite Difference Analysis

Results and Discussion

The computations described here are for idealized
inviscid rotational jets located far from the impinge-
ment plane with lengths scaled by the jet half width and
pressures by the maximum jet total pressure. Real
jets, however, encounter a free mixing zonc prior to
entry into the impingement region and data arc usually
presented with length scales given by cither the jet
height above ground or the half width of the undisturhed
jet at the ground planc. If a matching point between
the computed solution and point of free jet entry to the
impingement zone is established then the free jet length
scales can be related to the computational length scale

by well known free jet spreading rate paramecters?s 12,13

In presenting the computation/data comparisons it is
convcnient to use the rotational jet length scale so that
dimensionless jet heights, h, are always referred to
this quantity. The ground pressure data are normalized
by the peak ground planc pressure, py,, to climinate
total pressurc loss considerations.

For normal axisymmetric impingement, Giralt et al,
usc the criterion that the impingement region
commences when the centerline velocity is 98'% of that

in the undisturbed free jet at the identical distance from
the nozzle exit. According to the present computations
the location of this point is at z =~ 2,1 which is in close
agreement with the value, z ~ 2,2 observed by Giralt
et al. Comparison of the calculated ground plane
pressure distribution with data9, 12 (Fig. 4) shows
excellent agreement over the entire range of the
distribution. This is a considerable improvement upon
the inviscid solution of Scholtz and Trass!3 which
breaks down at large distances from the centerline.
The agreement between the current computations and
those of Scholtz and Trass for velocity decay along the
centerline is demonstrated in Fig. 5: the discrepancy
with respect to the datal3, 14 js attributed to mixing
phenomena within the impingement zonel2,

Comparison of the results for the normal impinge-
ment of fully developed two-dimensional jets procceds
in a similar manner. Numerical computations yield
the 987 criterion at z ~ 3,46 which, in conjunction
with accepted spreading rates1l, provides the relation-
ship h = 12.2, where, again, h is the dimensionless
distance from the jet exit to the ground plane. The
calculations, (Fig. 6), indicate that for this case, too,
there is excellent agreement with observations.,

If the jet exit plane is in proximity to the ground
plane (but outside the impingement zone), then a core
region is present and a developing velocity profile
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exists at the beginning of the impingement zone. The
computations of ground plane pressures under such
conditions are shown in Fig. 7 and are seen to fall
between the potential flow solution!8 and the fully
developed rotational flow solution. A comparison

with the data of Gardon and Akfirat, 16 assuming that
the half width is half the jet width (i.e., core flow

is present), shows that the measured ground plane
pressures are between the computed developing flow
cases 0=,1and 0 =,25. Qualitatively similar
results are found in the axisymmetric case when
datal2,19 are compared with the potential flow solution
of Strand.20 From Bower et al.'s# data, obtained with
a curved confining plate around the two-dimensional

jet exit, the half width at the impingement zone is
estimated to be 1.16 jet widths, in reasonable agree-
ment with the assumption of a developing flow. Although
the ground planc pressurc data differ from the present
calculations, a solution to the full Navier-Stokes
cquations by Bower ct al.* shows no improvement (Fig.
7). The confining plate, which can be the source of the
discrepancy vis a vis the inviscid calculations, is not
expected to influence the results near the centerline.
Fig. 8 demonstrates that the centerline velocity decay
is closcly represented by the developing flow case,

o ~ 0.5, while the Navier-Stokes representation? still
produces poor results.

Computation of two-dimensional, oblique impinge-
ment produces the flow configurations depicted in
Fig. 9. As the jet inclination angle, B, decreases
from 90° the stagnation streamline shifts, according
to Equation (14) in order to maintain the momentum
balance. This shift reduces the total pressure of
the stagnation streamline (Fig. 10), although the
pressure distributions still appear to be symmetric
about the peaks. The calculations show (Fig. 9) that
{or fully developed jets, the stagnation streamlines
approach the ground plane with virtually no deflection.
A Taylor series expansion of the stream function about
the stagnation point shows that the stagnation line
incidence angle, B, is rclated to the velocity gradient
at the stagnation point, (9u/d X)g, and the jet vorticity
distribution by

2(011/r$x)s

tan B (24)

.
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Fig. 10 Fully Developed Flow Ground Plane Pressure
Distribution Computations for 2-D Oblique
Jet Impingement

where w (xg) is the vorticity on the stagnation stream-
line, This relationship which is well satisfied in the
numerical calculations serves to verify the computational
results and indicates that for a uniform (potential) jet

the stagnation streamline is perpendicular to the ground
planc. It is instructive to compare further the rotational
and potential jet cases. The location, Xg, of the
resultant force is almost identical for the two cascs

over the range 30° <8 < 90° but the deflection of the
uniform jet stagnation streamline causes a significant
displacement of the maximum pressure point22, xg,
whercas Xg and xg are virtually coincident for the ?ully
developed jet (Fig. 11). The separation, xg-Xg, implies
a ground plane pressure distributionl8 that is asymmetric
about the stagnation point (Fig. 12) in contrast to the
result for the fully developed jet.

The data of Schauer and Eustisl? is compared with
the present computations for the fully developed jet
by again relating jet heights and half widths (Table 4).
The observed stagnation point location (Fig. 11) is
in agreement with the computations at g= 70° but
deviates with reduced impingement angles. Included
in the calculated results is a case with 8= 290° in
order to illustrate that the magnitude of the observed
trends are recovered by the computations.

Table 4 Dimensionless jet impingement zone height, Z,
and free jet exit plane height, h, measured from
the ground plane along the jet centerline as a
function of impingement angle.

B(deg) zZ h z/h
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Fig. 11 Ground Planc Location of Resultant Force and
Stagnation Point for Rotational, Irrotational

Jets (Rs, Resultlant Force; Xg» Stagnation Point)




The ground plane pressure distribution data
exhibit symmetry about the stagnation point as
suggested earlier and are well represented by the
calculations for 60° <8< 90° (Fig. 13). This is con~-
sistent with the range over which agreement is obtained
for the location of the stagnation point. Quantitative
disagreement between the computations and data at
more shallow incidence angles is not unexpected. The
calculated height of the impingement zone is 407 of the
jet height at g = 30° (Table 4) which, along with order
of magnitude arguments that can be invoked, 2,23
illustrates the increasing influence of the turbulent
stress gradient terms and consequent breakdown of
the inviscid rotational flow model at shallow impinge-
ment angles.

GROUND PLANE PRESSURE, p

[ L

1
-4 -3 -2 -1 0 1 2 3 4
DISTANCE FROM STAGNATION POINT, X—X¢

Fig. 12 Potential Flow Ground Plane Pressure
Distribution for 2-D Oblique Jet Impingement
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Fig. 13 Comparison of Computed and Obscrved Ground

Plane Pressurce Distributions for 2-D Oblique
Impingement

Conclusions

Numerical computations for a variety of
rotational jet impingement problems are given
here. From the results and discussion it may be
concluded that:

(1) the inviscid rotational flow formulation provides
an excellent description of the ground plane pressure
distribution for normally impinging fully developed
axisymmetric and two-dimensional jets,

(2) ground plane pressure distributions and centerline
velocity decays for normally impinging developing
two-dimensional jets may also be represented by
this technique and show improvement with respect
to existing Navier-Stokes type computations,

(3) the structurc of obliquely impinging fully developed
two-dimensional jets is such that the stagnation
streamline exhibits little deflection and the ground
planc pressurce distributions are symmetric about
the stagnation point,

(4) quantitative agrcement with observations is obtained
for stagnation point location and ground plane
pressurc distribution for oblique jet impingement
angles pB260°, and

(5) the extent of the impingement zone increases as the
jet inclination angle drops (e.g., at 8 = 30° it is
407 of the jet height) providing one indication that
turbulent stress gradient terms become increasingly
relevant in*the impingement zone for 8 < G0°.
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